Tensorflow实现AlexNet卷积神经网络及运算时间评测
本文实例为大家分享了Tensorflow实现AlexNet卷积神经网络的具体实现代码,供大家参考,具体内容如下
之前已经介绍过了AlexNet的网络构建了,这次主要不是为了训练数据,而是为了对每个batch的前馈(Forward)和反馈(backward)的平均耗时进行计算。在设计网络的过程中,分类的结果很重要,但是运算速率也相当重要。尤其是在跟踪(Tracking)的任务中,如果使用的网络太深,那么也会导致实时性不好。
fromdatetimeimportdatetime importmath importtime importtensorflowastf batch_size=32 num_batches=100 defprint_activations(t): print(t.op.name,'',t.get_shape().as_list()) definference(images): parameters=[] withtf.name_scope('conv1')asscope: kernel=tf.Variable(tf.truncated_normal([11,11,3,64],dtype=tf.float32,stddev=1e-1),name='weights') conv=tf.nn.conv2d(images,kernel,[1,4,4,1],padding='SAME') biases=tf.Variable(tf.constant(0.0,shape=[64],dtype=tf.float32),trainable=True,name='biases') bias=tf.nn.bias_add(conv,biases) conv1=tf.nn.relu(bias,name=scope) print_activations(conv1) parameters+=[kernel,biases] lrn1=tf.nn.lrn(conv1,4,bias=1.0,alpha=0.001/9,beta=0.75,name='lrn1') pool1=tf.nn.max_pool(lrn1,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool1') print_activations(pool1) withtf.name_scope('conv2')asscope: kernel=tf.Variable(tf.truncated_normal([5,5,64,192],dtype=tf.float32,stddev=1e-1),name='weights') conv=tf.nn.conv2d(pool1,kernel,[1,1,1,1],padding='SAME') biases=tf.Variable(tf.constant(0.0,shape=[192],dtype=tf.float32),trainable=True,name='biases') bias=tf.nn.bias_add(conv,biases) conv2=tf.nn.relu(bias,name=scope) parameters+=[kernel,biases] print_activations(conv2) lrn2=tf.nn.lrn(conv2,4,bias=1.0,alpha=0.001/9,beta=0.75,name='lrn2') pool2=tf.nn.max_pool(lrn2,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool2') print_activations(pool2) withtf.name_scope('conv3')asscope: kernel=tf.Variable(tf.truncated_normal([3,3,192,384],dtype=tf.float32,stddev=1e-1),name='weights') conv=tf.nn.conv2d(pool2,kernel,[1,1,1,1],padding='SAME') biases=tf.Variable(tf.constant(0.0,shape=[384],dtype=tf.float32),trainable=True,name='biases') bias=tf.nn.bias_add(conv,biases) conv3=tf.nn.relu(bias,name=scope) parameters+=[kernel,biases] print_activations(conv3) withtf.name_scope('conv4')asscope: kernel=tf.Variable(tf.truncated_normal([3,3,384,256],dtype=tf.float32,stddev=1e-1),name='weights') conv=tf.nn.conv2d(conv3,kernel,[1,1,1,1],padding='SAME') biases=tf.Variable(tf.constant(0.0,shape=[256],dtype=tf.float32),trainable=True,name='biases') bias=tf.nn.bias_add(conv,biases) conv4=tf.nn.relu(bias,name=scope) parameters+=[kernel,biases] print_activations(conv4) withtf.name_scope('conv5')asscope: kernel=tf.Variable(tf.truncated_normal([3,3,256,256],dtype=tf.float32,stddev=1e-1),name='weights') conv=tf.nn.conv2d(conv4,kernel,[1,1,1,1],padding='SAME') biases=tf.Variable(tf.constant(0.0,shape=[256],dtype=tf.float32),trainable=True,name='biases') bias=tf.nn.bias_add(conv,biases) conv5=tf.nn.relu(bias,name=scope) parameters+=[kernel,biases] print_activations(conv5) pool5=tf.nn.max_pool(conv5,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool5') print_activations(pool5) returnpool5,parameters deftime_tensorflow_run(session,target,info_string): num_steps_burn_in=10 total_duration=0.0 total_duration_squared=0.0 foriinrange(num_batches+num_steps_burn_in): start_time=time.time() _=session.run(target) duration=time.time()-start_time ifi>=num_steps_burn_in: ifnoti%10: print('%s:step%d,duration=%.3f'%(datetime.now(),i-num_steps_burn_in,duration)) total_duration+=duration total_duration_squared+=duration*duration mn=total_duration/num_batches vr=total_duration_squared/num_batches-mn*mn sd=math.sqrt(vr) print('%s:%sacross%dsteps,%.3f+/-%.3fsec/batch'%(datetime.now(),info_string,num_batches,mn,sd)) defrun_benchmark(): withtf.Graph().as_default(): image_size=224 images=tf.Variable(tf.random_normal([batch_size,image_size,image_size,3],dtype=tf.float32,stddev=1e-1)) pool5,parameters=inference(images) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) time_tensorflow_run(sess,pool5,"Forward") objective=tf.nn.l2_loss(pool5) grad=tf.gradients(objective,parameters) time_tensorflow_run(sess,grad,"Forward-backward") run_benchmark()
这里的代码都是之前讲过的,只是加了一个计算时间和现实网络的卷积核的函数,应该很容易就看懂了,就不多赘述了。我在GTXTITANX上前馈大概需要0.024s,反馈大概需要0.079s。哈哈,自己动手试一试哦。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持毛票票。