分享python数据统计的一些小技巧
最近在用python做数据统计,这里总结了一些最近使用时查找和总结的一些小技巧,希望能帮助在做这方面时的一些童鞋。有些技巧是很平常的用法,平时我们没有注意,但是在特定场景,这些小方法还是能带来很大的帮助。
1.在字典中将键映射到多个值上面
{'b':[4,5,6],
'a':[1,2,3]}
有时候我们在统计相同key值的时候,希望把所有相同key的条目添加到以key为键的一个字典中,然后再进行各种操作,这时候我们就可以使用下面的代码进行操作:
fromcollectionsimportdefaultdict
d=defaultdict(list)
print(d)
d['a'].append(1)
d['a'].append(2)
d['a'].append(3)
d['b'].append(4)
d['b'].append(5)
d['b'].append(6)
print(d)
print(d.get("a"))
print(d.keys())
print([d.get(i)foriind])
这里是使用了collections中的方法,这里面还拥有很多有用的方法,我们有时间在继续进行深入了解。
上面代码运行结果:
defaultdict(,{})
defaultdict(,{'b':[4,5,6],'a':[1,2,3]})
[1,2,3]
dict_keys(['b','a'])
[[4,5,6],[1,2,3]]
我们将数据填入之后,相当于进行快速分组,然后遍历每个组就可以统计一些我们需要的数据。
2.迅速转换字典键值对
data={...}
zip(data.values(),data.keys())
data是我们的格式数据,使用zip后进行快速键值转换,然后可以使用max,min之类函数进行数据操作。
3.通过公共键对字典进行排序
fromoperatorimportitemgetter
data=[
{'name':"bran","uid":101},
{'name':"xisi","uid":102},
{'name':"land","uid":103}
]
print(sorted(data,key=itemgetter("name")))
print(sorted(data,key=itemgetter("uid")))
数据格式就是data,我们想要对name或者uid进行排序我们就是用代码中的方法。
运行结果:
[{'name':'bran','uid':101},{'name':'land','uid':103},{'name':'xisi','uid':102}]
[{'name':'bran','uid':101},{'name':'xisi','uid':102},{'name':'land','uid':103}]
正如我们期望中的一样
4.对列表中的多个字典根据某一字段进行分组
注意注意,在进行分组前要首先对数据进行排序处理,排序字段根据实际要求来选择
即将处理的数据:
rows=[
{'name':"bran","uid":101,"class":13},
{'name':"xisi","uid":101,"class":11},
{'name':"land","uid":103,"class":10}
]
期望处理结果:
{
101:[{'name':'xisi','class':11,'uid':101},{'name':'bran','class':13,'uid':101}],
103:[{'name':'land','class':10,'uid':103}]
}
我们按照uid进行分组,这里只是演示,uid一般也不会重复。
这个比较复杂一点,我们一部一步来分解
some=[('a',[1,2,3]),('b',[4,5,6])]
print(dict(some))
结果:
{'b':[4,5,6],'a':[1,2,3]}
这里我们的目的是将元组转换成字典,这个很简单,应该都能看懂。接着我们来下一步对待处理数据进行排序:
data_one=sorted(rows,key=itemgetter("class"))
print(data_one)
data_two=sorted(rows,key=lambdax:(x["uid"],x["class"]))
print(data_two)
这里我们提供两种排序方式原理相同,只是样式稍有区别,第一种data_one是直接使用itemgetter,按照我们前面使用过得,直接按照某一字段进行排序,可是有时候我们会有另一种要求:
先按照某一字段排序,当第一字段重复时,再按照另一字段排序。
这时我们就用第二种方法,进行多字段值排序。
排序结果如下:
[{'name':'land','class':10,'uid':103},{'name':'xisi','class':11,'uid':101},{'name':'bran','class':13,'uid':101}]
[{'name':'xisi','class':11,'uid':101},{'name':'bran','class':13,'uid':101},{'name':'land','class':10,'uid':103}]
结果大家慢慢看一下,还是略有差别。
接下来就进行最后一步了,将我们刚才讲的两种方式结合起来使用:
data=dict([(g,list(k))forg,kingroupby(data_two,key=lambdax:x["uid"])]) print(data)
我们对排序好的数据进行分组,然后生成元组列表,最后将其转换成字典,这里大功告成,我们成功将数据进行分组。
python数据统计的一些小技巧就分享到这,有需要的可以参考学习。